1 1 M ay 2 00 0 APPROXIMATELY FINITELY ACTING OPERATOR ALGEBRAS

نویسنده

  • STEPHEN C. POWER
چکیده

−→ (Ak, φk) and the operator algebras A = lim −→ (Ak, φk) obtained as limits of direct sums of matrix algebras over E with respect to star-extendible homomorphisms. The invariants in the algebraic case consist of an additive semigroup, with scale, which is a right module for the semiring VE = Homu(E⊗K, E⊗K) of unitary equivalence classes of star-extendible homomorphisms. This semigroup is referred to as the dimension module invariant. In the operator algebra case the invariants consist of a metrized additive semigroup with scale and a contractive right module VE-action. Subcategories of algebras determined by restricted classes of embeddings, such as 1-decomposable embeddings between digraph algebras, are also classified in terms of simplified dimension modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 1 . 08 75 v 3 [ m at h . D S ] 1 5 M ay 2 00 8 GROUPS NOT ACTING ON MANIFOLDS

In this article we collect a series of observations that constrain actions of many groups on compact manifolds. In particular, we show that “generic” finitely generated groups have no smooth volume preserving actions on compact manifolds while also producing many finitely presented, torsion free groups with the same property.

متن کامل

Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras

The classical theorem of Weitzenböck states that the algebra of invariants K[X] of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated. This algebra coincides with the algebra of constants K[X] of a linear locally nilpotent derivation δ of K[X]. Recently the author and C. K. Gupta have st...

متن کامل

ar X iv : m at h / 03 05 43 4 v 1 [ m at h . R T ] 3 0 M ay 2 00 3 CLUSTER ALGEBRAS III : UPPER BOUNDS AND DOUBLE BRUHAT CELLS

We develop a new approach to cluster algebras based on the notion of an upper cluster algebra, defined as an intersection of Laurent polynomial rings. Strengthening the Laurent phenomenon established in [6], we show that, under an assumption of “acyclicity”, a cluster algebra coincides with its “upper” counterpart, and is finitely generated; in this case, we also describe its defining ideal, an...

متن کامل

ar X iv : m at h / 05 05 02 8 v 1 [ m at h . O A ] 2 M ay 2 00 5 Furstenberg Transformations and Approximate Conjugacy ∗

Let α and β be two Furstenberg transformations on 2-torus associated with irrational numbers θ1, θ2, integers d1, d2 and Lipschitz functions f1 and f2. We show that α and β are approximately conjugate in a measure theoretical sense if (and only if) θ1 ± θ2 = 0 in R/Z. Closely related to the classification of simple amenable C∗-algebras, we show that α and β are approximately K-conjugate if (and...

متن کامل

ar X iv : 0 81 1 . 47 25 v 2 [ m at h . R A ] 1 2 M ay 2 00 9 On the deformation theory of structure constants for associative algebras

Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008